
SAS Protocol
The SAS (Subject - Action Service) protocol allows for running command line applications remotely.
It allows for multiple users to register and they may have multiple sessions with their own I/O. All
exchanges are secure. You must implement the commands to run, as this is just a framework and
servlet that allows that. Any command line program can be converted to an SAS version. What happens
is that the IO is replaced by the SAS version, allowing the entire application to operate oblivious to
SAS. The user just uses the application but the calls are executed on the service and returned.

Prerequisites
The client registers (out of band, at this point so an administrator can vet them) and client sends the
server a public key. The client will use the private key to encrypt all exchanges. In the initial exchange,
a symmetric key (henceforth called the session key) is created and exchanged and all subsequent
communications occur with that. This is a minor variation on PGP.

The basic protocol is POST only and the body of the post is a based64 string which consists of a JSON
Object (details on format below) that has been converted to a string then encrypted. The body of the
post is never in plain text, though the content type is text.

Information is sent as headers. The initial logon requires sending Authorization Basic and after that, the
session id must be included as session-id

Request format
A request is of the form

{"sas":
 {"action" : action,
 "content" : base64 string
 },
"comment": string
}

Actions:

• logon - initial logon

• execute - take the content, execute it

• logoff - end the session.

The entire request is encrypted with the client’s private key.

Initial logon

Request

{"sas":{"action":"logon","executable_name":name }}

Headers

Basic authorization header. There is no password.

Note that the executable_name is assigned by the server and may be omitted if the server only serves
up one type of executable.

Response
{
 "status":int,
 "session_id":uuid
}

The returned session_id must be sent with each future request in the header name session-id.

Execute

Request
{"sas":
 {"action":"execute",
 "content": base64string
 }
}

Header
session-id

Response
{ "status": int,
 "content": base64string,
 "prompt": base64string
}

Logoff

Request
{"sas":
 {"action":"logoff"}
}

Header
session-id

Response
{ "status": int,
 "message": base64string
}

New Key
This is a request from the client for a new session key. Clients should request a new one ever so often if
they want to ensure very high levels of security. The old key is invalidated and all encryption occurs
with the new session key.

Request
{"sas":
 {"action":"new_key"}
}

Header
session-id

Response

Configuring a server

The Server configuration
The basic server configuration is much like any configuration in the NCSA security library.

<config>
 <sas name="default"
 alias="debug"
 accessList="localhost"/>
 <sas name="debug"
 enabled="true">
 <fileStore path="/home/ncsa/apps/sas/storage">
 <clients/>
 </fileStore>

 </sas>
</config>

This has outer tag for config and each configuration has a tag of sas. The name is passed in so that
there can be many configurations. The main section is the storage. This should point the location
where client configuration can be stored. Note that independent of the ambient server, you can set the

https://ncsa.githib.io/security-lib

accessList to be a list of hostnames that are restricted. No omitting it or no entries means no
restriction is done. The elements are comma separated.

Adding a client.
First step is that the client must have configured itself and have a public key. Once you are in the SAS
CLI, you simply issue the create command and follow the prompts. You can enter the key information
in a variety of formats.

Once configured, the client is ready for use.

Running the CLI
The SAS CLI is a simple command line tool that can be extended to do work with any SAS extensions
you care to write. Flags

flag Description
-cfg Path to the configuration file

-edit [filename] Whether to edit the given file. If no file is given you will be prompted for one.
--help Show general help for the CLI

-v Increase verbosity.
-print_key Print the public key then exit. Options are jwk (for JSON web key format) or pkcs

for PKCS 5 format. Either of these can be used to register the client. Note that this
requires the -cfg parameter to so it knows where to get the key.

Client configuration
Fortunately, the basic command line client has a feature to create a configuration. The client startup
options for configuration are

-edit [filename]

If the file exists, it will allow you to set each of the properties in turn. Follow the instructions on the
screen, but the basic functionality is that

property “old value”:>

which means that whatever the property is has the current ”old value”. If you hit return only, then
nothing is changed, otherwise, type in the new value.
You will also be prompted to create keys. There are options for JSON webkey or PKCS format. JWK is
the more modern and is (as of this writing) supplanting the older PKCS formats, but both are still fine.

Invocation examples

Basic startup
sas -cfg fileName

Start up the client with the given fileName. Note the fileName must be the complete path

Create a new configuration
sas -edit

Edit an existing configuration
sas -edit fileName

Get help
sas --help

Print the public key
sas -print_key jwk -cfg fileName

Extending SAS
So the entire aim of SAS is to be able to remotely run some piece of code. You need to implement the
Executable interface, then extend the SASServlet and override the createExecutable method to return
your Executable. The system ships with a really silly EchoExecutable that just echos what the user
types in, but does do all of the correct logon and logoff actions, so it is a good test to see if you can
register a client and use one before you get down to writing your own.

Converting your application to a SAS application.
The major factor is that it should IO such as System.out or System.in or the Sec-Lib IOInterface
(which models those).. The aim then is to intercept input, wrap it up and send it to the server where it is
executed, then print out the result. The user experience is exactly as if using a command line.

For the server-side executable:
1. Extend the class, implementing the Executable interface.

2. Intercept all IO to use IOInterface. The BasicIO class in Sec-Lib just fronts all of the standard
Java IO, so rewrite with that first if needed. The you can just swap it out. Ideally in your
extension, you just set the IOInterface and that is the only tweak you need.

https://ncsa.github.io/security-lib/apidocs/edu/uiuc/ncsa/sas/Executable.html
https://ncsa.github.io/security-lib/apidocs/edu/uiuc/ncsa/sas/SASServlet.html#createExecutable()
https://ncsa.github.io/security-lib/apidocs/edu/uiuc/ncsa/sas/SASServlet.html
https://ncsa.github.io/security-lib/apidocs/edu/uiuc/ncsa/sas/Executable.html

For the Servlet
1. Extend the SASServlet. Note that this is inclued in a jar with the assumption you will extend it

as part of creating your own web apps.

2. You need to override the createExecutable() method in the SAS servlet. This returns an instance
of the server-side executable.

https://ncsa.github.io/security-lib/apidocs/edu/uiuc/ncsa/sas/SASServlet.html#createExecutable()

	Prerequisites
	Request format

	Initial logon
	Execute

	Logoff
	New Key
	Configuring a server
	The Server configuration
	Adding a client.

	Running the CLI
	Client configuration
	Invocation examples

	Extending SAS
	Converting your application to a SAS application.
	For the server-side executable:
	For the Servlet

