NCSA Security Library
Configuration Framework

Overview

Various systems need a configuration file. NCSA supports a very specific Configuration Framework
aka CF, (basic system you extend to roll your own). The basic gist is a set of configurations that
have a name. You may then retrieve your configuration by name. The framework allows for:

* Importing other configurations — point to other configurations and they will be seamlessly
imported

* Setting environment variables — You may set environment variables and reference them in
your configuration, allowing great flexibilty.

* Aliases — You may create your custom configurations and, rather than having a body, set an
alias to point to another configuration. This lets you, e.g., just specify loading a
configuration name default but have the specific configuration possibly change. You service
or application then can be configured once and the configuration itself can change to reflect
your requirements.

* Inheritance — you may have configurations inherit from other configurations. Multiple
inheritance is supported.

Basic structure

The basic structure for an XML document is

<bundle>

<file include="path"/>*

<env key | include>[value]</env>*

<custom name {alias} extends=list></custom>
</bundle>

The bundle element

This is the outermost wrapper for the framework. Every element the system recognizes is in this
element. When we say bundle we refer to a collection, set or whatever you want to call it, of
configurations, each of which is named uniquely.

Nota Bene: Earlier versions of this system used the tag config not bundle. Both are supported
though bund1e is preferred.

The file element

The file element has a single attribute, the fully qualified path to a file. Note that the file is another
CF file. Files may load files. Note that circular references will be caught and an exception thrown,
so A loads B which loads A would be caught.

The env element

The environment is simply a set of keys and values. The keys are accessed in the configuration
using the syntax ${key} You may have these anywhere in the file (including in env elements and file
elements). Your configuration may even have them in XML tags so that, until resolution, it is not a
valid XML document. All environment tags are pre-processed and resolved before the main
configuration is loaded.

Scope of environment variables

The environment element resides in the top level of the configuration. You may either insert
environment elements anywhere in this, but they will be extracted and processed together.
Variables are scoped to that file and files it loads. So if a bundle, A, sets environment variables and
includes a bundle, B, then all of the environment variables in A are also available in B. B may
override them too. However, variables loaded in B stay scopes there and are not available in A.
This mimics standard scoping for functions, for instance.

custom elements.

To actually use the framework, you create a single configuration in XML for instances of your
system. This is then given a tag by you (labelled custom above). There may be as many as you like,
one for each configuration you need and these all reside in the top level. When you load your
configuration file, you specify what the custom tag is and the system then applies the framework to
it, handing you back the CFNode object that represents it. You may either navigate this directly or
use various utility methods in that class. The aim is once you specify your own configuration, the
headache of slogging through XML tags is done for you.

An Example

A very simple example of using this framework. You have a custom tag of server, In this, you have
two configurations, one named default which just points to the current configuration you want, and
the other named mysql.8.3. Note that you could have several such named configurations if you had
to support different MySQL versions and just choose the right one. This is extremely useful when
migrating to another version since you can back your server out of any changes with a minor
configuration change.

There are two environment variables defined, root_dir which points to your files on disk and
server which is the address your service should use (in this case for MySQL).

<bundle>
<env key="root_dir">/path/to/files</env>
<env key="server'">localhost:4452</env>

<server name="default" alias="mysql.8.3"/>
<server name="mysql.8.3">
<keys jwk_file="${root_dir}/etc/keys.jwk"/>
<mysql address="jdbc:mysql://${server}/my_service"/>
</server>
</bundle>

Effective post-proccessed configuration named default:

<server name="default">

<keys jwk_file=">/path/to/files/etc/keys.jwk"/>

<mysqgl address="jdbc:mysql://localhost:4452/my_service"/>
</server>

i.e., this is what your application "sees".

Using the system

The maven dependency
You specify the dependency via maven

<dependency>
<groupId>edu.uiuc.ncsa.security</groupId>
<artifactId>storage</artifactId>
<version>latest</version>

</dependency>

Loading a configuration from a bundle

The basic steps are
1. Load the bundle. You may use a file, resource or just create your own stream
2. Get the named configuration you want

3. Perform operations on said configuration to get sub-nodes, attributes etc.

Example

We will show two ways to load the default named configuration from the bundle my_config.xml.

Using the builder pattern

CFBundle bundle = new CFLoader.Builder()
.tagname("service")
.inputStream(getFileInputStream("/path/to/my_config.xml"))
Lbuild()
. loadBundle();

CFNode service = bundle.cfg.getNamedConfig("default");

Using standard Java class calls

FileInputStream fis
CFLoader config
CFBundle bundle

CFNode service

getFileInputStream("/path/to/my_config.xml");
new CFLoader();

config.loadBundle(fis, "service");
bundle.cfg.getNamedConfig("default");

Both do the same thing.

Using the configuration.

Like XML, the configuration is logically divided into nodes. The CFNode class allows you to
navigate your configuration with convenient calls, handling all of the messy details. The major calls
are

» getFirstAttribute(attributeName) — returns the first attribute value (as a string) from the
current node.

» getAttributes(attributeName) — returns all of the attributes for the given name
» getFirstNode(nodeName) — returns the CfNode child with the given name

* getNodes(nodeName) — returns a list of all the CFNodes that are children of this node.

There are other convenience methods too, such as getFirstBooleanAttribute which returns the first
attribute, possibly with a default. Note that boolean values are true|on or false|off and case
insensitive. If you use one of the filters for attributes, then only such attributes are returned and
attributes that are not of the type are skipped.

Example
Let us say you had the following named configuration in your bundle:

<sas name="production"
enabled="true">
<fileStore path="/opt/oadmp/var/storage/file_stores/sas">
<clients indexOn="true"/>
</fileStore>

<JSONWebKey defaultKeyID="2D700DF531E@9B455B9E74D018F9A133">
<path><![CDATA[/opt/oadmp/etc/sas-keys.jwk]]></path>
</JSONWebKey>
</sas>

Then you could navigate it as

CFNode sasConfig= bundle.cfg.getNamedConfig("production");

// Check that the configuration is enabled.
if(!sasConfig.getFirstAttribute("enabled"){ // do something }

// Load the fileStore (assuming load() takes the file path and
// returns the store you want.

CFNode fsConfig = sasConfig.getNode("fileStore");

FileStore fileStore = load(fsConfig.getFirstAttribute("path"));

// Check that the
if(fsConfig.getFirstNode("clients").getFirstBooleanAttribute("index0On")){
// then do something with an index

}

// And so forth to get the JSONWebkey

Again, part of the CF is to hide grisly complexities of XML from you and allow you to manage
possibly very many configurations easily, choosing them as needed.

	Overview
	Basic structure
	The bundle element
	The file element
	The env element
	Scope of environment variables

	custom elements.

	Using the system
	The maven dependency
	Loading a configuration from a bundle
	Using the configuration.

