
Storage Upkeep

Introduction
Stores can often get extra elements in them, such as unwanted or abandoned entries. There is a facility
for each store that will allow the administrator to specify actions that may be taken. Generally these are
in the form of rules that are applied in order. These are inside the store tag in the configuration and
apply exactly to that store.

Usage
This facility can be invoked on any store that tracks access patterns. It would not be used on stores
managed by the system (such permissions or transactions) since that would interfere with processing.
To use this, simply put an upkeep element in the tag for the store. There is a full example of this at the
end.

The upkeep DTD
<!DOCTYPE upkeep [
 <!ELEMENT upkeep (rule)*>
 <!ATTLIST upkeep
 alarms CDATA #REQUIRED
 debug CDATA #REQUIRED
 enabled CDATA #REQUIRED
 interval CDATA #REQUIRED
 output CDATA #REQUIRED
 runCount CDATA #REQUIRED
 skipVersions CDATA #IMPLIED
 testOnly CDATA #REQUIRED
 verbose CDATA #REQUIRED>
 <!ELEMENT rule (id|date)*>
 <!ATTLIST rule
 action CDATA #REQUIRED
 extends CDATA #IMPLIED
 skipCollateral CDATA #IMPLIED
 name CDATA #IMPLIED
 skipVersions CDATA #IMPLIED
 verbose CDATA #IMPLIED >
 <!ELEMENT id (#PCDATA)>
 <!ATTLIST id
 regex CDATA #IMPLIED>
 <!ELEMENT date (#PCDATA)>
 <!ATTLIST date
 type CDATA #REQUIRED
 value CDATA #IMPLIED
 when CDATA #REQUIRED>
]>

Basic structure
The basic structure of this element is

<upkeep attributes >
 <rule attributes >
 conditions
 </rule>
 … more rules
</upkeep>

Logical connectives
Each rule is separated logically by and OR. In side each rule, all dates are logically ANDed and all ID
tests are ORed.

<upkeep>
<rule name="whitelist" action="retain"> <!-- Rule list -->
 <id>client:/my_ersatz</id>
 <id regex="true"><![CDATA[^localhost.*]]></id>
 <id regex="true">^test:.*</id>
</rule>

<rule name="unused" action="delete"> <!-- Rule List -->
 <date type="created" when="before" value="6 hr"></date> <!-- rule entries -->
 <date type="accessed" when="never"></date>
</rule>
<rule name="abandoned" action="archive"> <!-- Rule list -->
 <date type="accessed" when="before" value="1 year"></date>
</rule>

<rule name=”blacklist” action="delete">
 <id regex="true">^foo.*</id>
 <id regex="true">^delete.*</id>
 <id regex="true">^testScheme.*</id>
</rule>
</upkeep>

The logical effect for selecting a store entry to delete is

(!whitelist) &&(unused || abandoned || blacklist)

and within say, unused,

(created <= now - 6 months) && (accessed never)

Short-circuit logic

When creating long expressions, keep in mind that short-circuit evaluation is used. In this case, the first
term that would render the rest of the expression immaterial evaluation halts evaluation. In logical
terms.

A B ∧

B is not evaluated if A is false

A B∨

B is not evaluated if A is true.

The chief ramification is that if you have a complex list of expressions not all of them will necessarily
be evaluated. This is why rules to retain objects should be done before rules to remove objects, e.g.,
and overly complex lists of rules should be scrutinized.

Element tables

upkeep
Name Type Req? Default Description

alarms time list N -- Comma delimited list of times of the form hh:mm:ss.
E.g.
alarms="06:00:00, 18:30:00"
runs this daily at those times.

debug N false If debugging in addition to server settings

enabled flag N true If false, this will turn off this entire configuration

interval string N 6 hr A time interval. See time units

output string N -- Full path to a file where the results of each application are sent. The file is in
JSON format.

runCount int N -- The number of times for this to run. Each time the facility runs, this is
decrements and when all have been used, the facility is disabled. Note that not
setting this (the default) means that the facility runs at intervals indefinitely.

skipVersions flag N true Rules skip any versions. If you set this false then versions are subjected to the
rules and may end up being deleted as well.

verbose flag N false Makes output to the logs much chattier. In particular, a summary of each
iteration is printed in the logs.

testOnly flag N false If true then NO actual operations on the store are done. This overrides every
rule. The intent is that you can switch off all actual processing if you need to
debug.

Rule

Name Type Req? Default Description

action string Y -- An action for this rule.

enabled flag N true enable or disable this. It is overridden by the upkeep flag testOnly.

extends string N -- A list of names in order of inheritance. This allows you to set rules and re-use them.
Note that this is not a terrible clever facility in that if there is an unknown rule or
any issue at all an error will be raised. This is on purpose since you do not want
some set of rules misapplied an potentially corrupting your store.

name Strin N A name unique within this upkeep. Note that if no name is given, a random one is

https://oa4mp.org/server/dtd/server-dtd-service-tag.html#A_note_on_time_and_units

g generated.

skipCollateral

skipVersions flag N true See note above for the upkeep element. This overrides that.

verbose flag N false This will make output to the log chattier just for this rule if true.

Allowed actions are

• archive = create an archive of the given item and remove the main entry

• delete = delete the entry.

• retain = retain the entry. Note that this will override all other rules to archive or delete
subsequently.

• test = only see what actual store entries this rule would apply to.

Extending rules.
You may specify other rules by name in order. This means that if your list is

<rule name="my_rule"
 extends="A, B, C"

Then all the rules for A are added, then those for B, then those for C and finally any specific rules in
my_rule are added.

E.g.
<upkeep>
 <rule name="no_ligo"
 enabled="false">
 <!--
 rule applies to everything except clients whose
 ids start with test-ligo:
 -->
 <id regex="true" negate="true">^test-ligo:.*</id>
 <rule>
 <rule name="never_accessed"
 enabled="false">
 <date type="accessed" when="never"/>
 </rule>
 <rule name="no_ligo_last_week"
 extends="no_test,never_accessed">
 <date type="created" when="after" value="1 week"/>
 </rule>
</upkeep>

Note that the parent rules are disabled or they will run. This applies to clients that were created one
week ago, never accessed and whose client ids do not start with test-ligo:

Rule entries
There are two main types of rule entries. Date and ID. ID refers to the primary key of the element in the
store. Dates are those managed by the system and are for creation time, last accessed time and the last
modified (i.e. updated) time.

ID entries

These are conditionals for the identifier. The content of the entry is either the identifier or a regular
expression. Matching is either exact or can be done with a regular expression. Attributes are

Name Type Req? Default Description

negate flag N false An action for this rule.

regex flag N false If the value of the element is a regular expression

If you set the negate flag to true then anything that does not match the regex is taken. This can be
useful, but do use sparingly at best since it is easy to mis-state a regex rule with negation and delete
most of your store.

Examples
<id>lh:/dwd-7</id>
<id>client:/my_ersatz</id>
<id regex="true"><![CDATA[[a-zA-Z&&[^whatEver\\s\\d+$]]]]></id>
<id regex="true" negate="true">.*production.*</id>

Respectively these check the first two for exact matches. The next shows that CDATA elements can be
used if needed when the rule is complex. The last example shows that any identifier that does contain
the work production should be taken.

Date entries

Supported attributes are

Name Type Req? Default Description

type string Y -- The type of date, created, accessed or modifiede

value string Y -- Either an ISO 8601 (absolute date) or a time interval. See time units.

when string Y -- When does this apply, before, after or never.

Examples

Here is a pair of conditions for a rule.

<rule name="unused" action="delete">
 <date type="created" when="before" value="6 mo"></date>
 <date type="accessed" when="never"></date>
</rule>

The meaning is and entry created before 6 months ago and never accessed matches. The rule then
specifies these are deleted. The name of the rule is arbitrary, but “unused” seems pretty apt.

Full example

Here is an example from one of our test servers

https://oa4mp.org/server/dtd/server-dtd-service-tag.html#A_note_on_time_and_units

 <mariadb ...>
 <clients>
 <upkeep output="/home/ncsa/temp/report.json"
 interval="6 hrs.">
 <rule name="allowlist" action="retain">
 <id>lh:/dwd-7</id>
 <id>client:/my_ersatz</id>
 <id regex="true">^localhost.*</id>
 <id regex="true">^auto-test:.*</id>
 <id regex="true">^test:.*</id>
 </rule>
 <rule name="unused" action="delete">
 <date type="created" when="before" value="6 mo"/>
 <date type="accessed" when="never"/>
 </rule>
 </upkeep>
 </clients>
 <!-- other stores →
 </mariadb>

This writes a report of the results at every run (which is harvested by another program). It runs every 6
hours and starts with a whitelist of testing clients (in this case). These are retained even if the next rule
would otherwise flag them for removal. The last rule deletes every other client that is older than 6
months and has never been accessed.

	Introduction
	Usage
	The upkeep DTD

	Basic structure
	Logical connectives
	Short-circuit logic

	Element tables
	upkeep
	Rule

	Extending rules.
	Rule entries
	ID entries
	Date entries
	Full example

